Arithmetic Aptitude :: QE Quiz 1
Home » Arithmetic Aptitude » QE Quiz 1 » General Questions

Description: Free Online Test questions and answers on Quadratic Equation with explanation for various competitive exams,entrance test. Solved examples with detailed answer test 1

Exercise

 "The secret to creativity is knowing how to hide your sources." - Albert Einstein
1 . Directions (Q. 1-5): Two equations (I) and (II) are given in each question. On the basis of these equations you have to decide the relation between ‘x’ and ‘y’ and give answer.

(1) if x > y
(2) if x < y
(3) if x $\geq$ y
(4) if x $\leq$ y
(5) if x = y or no relation can be established between ‘x’ and ‘y’.

$Q.$ I. $6x^ 2 - 19x + 15 = 0$
II.$10y^ 2 - 29y + 21 = 0$
 x > y x < y x $\geq$ y x $\leq$ y
2 . I. 12 $x^ 2$ + 11x - 56 = 0
II. 4 $y^ 2$ - 15y + 14 = 0
 x > y x < y x $\geq$ y x $\leq$ y
3 . I. $3x 2 + 13x + 12$= 0
II.$y^ 2 + 9y + 20$= 0
 x > y x < y x $\geq$ y x $\leq$ y
4 . I. $8x^ 2$ - 15x + 7 = 0
II. $2y^ 2$ - 7y + 6 = 0
 x > y x < y x $\geq$ y x $\leq$ y
5 . I. 7x - 3y = 13
II. 5x + 4y = 40
 x > y x < y x $\geq$ y x $\leq$ y
6 . I.$2x^ 2$ - 11x + 15 = 0
II.$21y^2$ - 23y + 6 = 0
 x > y x < y x $\geq$ y x = y or no relation can be established between ‘x’ and ‘y’.
7 . I. $5x^ 2$ - 16x + 11= 0
II. $5y^ 2$ - 3y - 2 = 0
 x>y x $\geq$ y x x $\leq$ y
8 . I. $x^ 2$ + 11x + 28 = 0
II. $2y^ 2$ + 13y + 20 = 0
 x > y x < y $x \geq y$ $x \leq y$
9 . I. $6x^ 2$ + 29x + 35 = 0
II. $3y^ 2$ + 19y + 30 = 0
 $x > y$ $x < y$ $x \geq y$ $x \leq y$
 $x > y$ $x < y$ $x \geq y$ $x \leq y$