Arithmetic Aptitude :: QE Quiz 12
Home » Arithmetic Aptitude » QE Quiz 12 » General Questions

Description: Free Online Test questions and answers on Quadratic Equation with explanation for various competitive exams,entrance test. Solved examples with detailed answer test 12

Exercise

 "Life is like riding a bicycle. To keep your balance you must keep moving." - Albert Einstein
1 . Directions (Q. 1-5) : In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer
(1) if x > y
(2) if x $\geq$ y
(3) if x < y
(4) if x $\leq$ y
(5) if x = y or no relationship can be established

$Q.$
I. $20x^ 2$ - 67x + 56 = 0
II. $56y^ 2$ - 67y + 20 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
2 . I. $x^ 4$ = 65536
II. y = $\sqrt[3]{4096}$
 $x > y$ $x \geq y$ $x < y$ x ≤ y
3 . I. $2x^ 2$ + 11x - 40 = 0
II.$4y^ 2$ - 27y + 44 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
4 . I. 7x = 4y + 85
II. y = $\sqrt[3]{ 17576}$
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
5 . I . $x ^2$ = 14641
II. y = $\sqrt{14641}$
 $x > y$ $x \geq y$ $x < y$ x ≤ y
6 . Directions (Q. 6-10): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer
(1)if $x > y$
(2) if $x \geq y$
(3) if $x < y$
(4) if $x \leq y$
(5) if x = y or if there is no relation between ‘x’ and ‘y’

$Q.$
I. $x^ 2$ + 42 = 13x
II. y = $\sqrt[4]{1296}$
 $x > y$ x ≥ y $x < y$ $x \leq y$
7 . I.$x^ 2$ + x - 2 = 0
II. $y^ 2$ + 7y + 12 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
8 . I.$3x^ 2$ - 23x + 40 = 0
II. $2y^ 2$ - 23y + 66 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
9 . I. $15x^ 2$ - 46x + 35 = 0
II. $4y^ 2$ - 15y + 14 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
10 . I. $x^ 2$ + 5x - 6 = 0
II. $2y^ 2$ - 11y + 15 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$