Arithmetic Aptitude :: QE Quiz 16
Home » Arithmetic Aptitude » QE Quiz 16 » General Questions

Description: Free Online Test questions and answers on Quadratic Equation with explanation for various competitive exams,entrance test. Solved examples with detailed answer test 16

Exercise

 "Example is better than precept." - (Proverb)
1 . Directions (Q. 1-5) : In the following questions two equations numbered I and II are given. You have to solve both the equations and give answer if
(l) x > y
(2) x ≥ y
(3) x < y
(4) x ≤ y
(5) x = y or the relationship between ‘x’ and ‘y’ cannot be established.

$Q.$
I . $15\over \sqrt{x}$ - $9\over \sqrt{x}$ = $(x)^{1\over2}$
II. $y^{10} - (36)^5$ = 0
 $x > y$ x ≥ y $x < y$ $x \leq y$
2 . I.5x + 2y = 96
II.21x + 15y = 489
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
3 . I. $(441)^{1\over2}x^2 - 111 = (15)^2$
II. $\sqrt{121} y^2$ + $6^3$ = 260
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
4 . I.17x = $(13)^ 2$ + $\sqrt{196}$ + $(5)^ 2$ + 4x
II. 9y - 345 = 4y - 260
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
5 . I. $3x^ 2$ - 13x + 14 = 0
II.$y^ 2$ - 7y + 12 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
6 . I. $2x^ 2$ - 8x - 7x + 28 = 0
II. $2y^ 2$ + 10y - 7y - 35 = 0
 $x > y$ x ≥ y $x < y$ $x \leq y$
7 . I.28x - 20y = 96
II.28x + 21y = 301
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
8 . I . x = $\sqrt[3]{2744}$
II . y = $\sqrt{487}$
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
9 . I. $x^ 2$ - x - 8x + 8 = 0
II. $2y^ 2$ - y - 10y + 5 = 0
 $x > y$ $x \geq y$ $x \leq y$ x = y or no relation can be established between ‘x’ and ‘y’.
10 . I. $2x^ 2$ + 2x + x + 1 = 0
II. $6y^ 2$ + 9y + 8y + 12 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$