Arithmetic Aptitude :: QE Quiz 7
Home » Arithmetic Aptitude » QE Quiz 7 » General Questions

Description: Free Online Test questions and answers on Quadratic Equation with explanation for various competitive exams,entrance test. Solved examples with detailed answer test 7

Exercise

 "Example is better than precept." - (Proverb)
1 . Directions (Q. 1-10): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer
(1) if x > y
(2) if x $\leq$y
(3) if x < y
(4) if x $\leq$
5) if x = y or the relationship between x and y cannot be established.

$Q.$
I. $x^ 2$ + 12x + 36 = 0
II. $y^ 2$ + 15y + 56 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
2 . I. $x^ 2$ = 35
II. $y^ 2$ + 13y + 42 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
3 . I. $2x^ 2$ - 3x - 35 = 0
II. $y^ 2$ - 7y + 6 = 0
 $x > y$ $x \geq y$ $x < y$ x = y or no relation can be established between ‘x’ and ‘y’.
4 . I. $6x^ 2$ - 29x + 35 = 0
II. $2y^ 2$ - 19y + 35 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
5 . I.$12x^ 2$ - 47x + 40 = 0
II. $4y^ 2$ + 3y - 10 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
6 . I. $x^ 2$ + 3x - 28 = 0
II.$y^ 2$ - 11y + 28 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
7 . I. $6x^ 2$ - 17x + 12 = 0
II.$6y^ 2$ - 7y + 2 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
8 . I. x = $\sqrt{256}\over \sqrt{576}$
II. $3y^ 2$ + y-2 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
9 . I. $x^ 2$ = 64
II. y$^ 2$ = 9y
 $x > y$ $x \geq y$ $x \leq y$ x = y or no relation can be established between ‘x’ and ‘y’.
10 . I. $x^ 2$ + 6x - 7 = 0
II. 41y + 17 = 140
 $x > y$ $x \geq y$ $x < y$ $x \leq y$