Arithmetic Aptitude :: QE Quiz 9
Home » Arithmetic Aptitude » QE Quiz 9 » General Questions

Description: Free Online Test questions and answers on Quadratic Equation with explanation for various competitive exams,entrance test. Solved examples with detailed answer test 9

Exercise

 "No one is as deaf as the man who will not listen." - (Proverb)
1 . Directions(Q. 1-10): In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer
(1) if x > y
(2) if x $\geq$ y
(3) if x < y
(4) if x $\leq$ y
(5) if x = y or no relation can be established between ‘x’ and ‘y’.

$Q.$
I. $2x^ 2$ + 13x - 7 = 0
II. $2y^ 2$ - 5y + 3 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
2 . I. $2x^ 2$ -15x + 28 = 0
II. $4y^ 2$ - 16y + 15 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
3 . I. $x^ 2$ + 8x + 16 = 0
II. $y^ 2$ = 16
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
4 . I. $x^ 2$ - 2x - 24 = 0
II.$y^ 2$ + 8y = 0
 $x > y$ $x \geq y$ $x < y$ x = y or no relation can be established between ‘x’ and ‘y’.
5 . I. $x^ 2$ + 4x = 0
II.$y^ 2$ + 10y + 25 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
6 . I. $2x^ 2$ + x – 1 = 0
II. $2y^ 2$ + 13y + 15 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
7 . I. $x^ 2$ + 12x + 32 = 0
II. $2y^ 2$ + 15y + 27 = 0
 $x > y$ $x \geq y$ $x < y$ x = y or no relation can be established between ‘x’ and ‘y’.
8 . I. $6x^ 2$ – 17x + 12 = 0
II. $7y^ 2$ – 13y + 6 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$
9 . I. $x^ 2$ – 82x + 781 = 0
II. $y^ 2$ = 5041
 $x > y$ $x < y$ x = y or no relation can be established between ‘x’ and ‘y’. $x \geq y$
10 . I. $6x^ 2$ – 47x + 80 = 0
II. $2y^ 2$ – 9y + 10 = 0
 $x > y$ $x \geq y$ $x < y$ $x \leq y$